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Attention is critical to high-level cognition and attention deficits are a hallmark of neurologic and neuropsy-
chiatric disorders. Although years of research indicates that distinct neuromodulators influence attentional
control, a mechanistic account that traverses levels of analysis (cells, circuits, behavior) is missing. However,
such an account is critical to guide the development of next-generation pharmacotherapies aimed at fore-
stalling or remediating the global burden associated with disorders of attention. Here, we summarize current
neuroscientific understanding of how attention affects single neurons and networks of neurons. We then
review key results that have informed our understanding of how neuromodulation shapes these neuron
and network properties and thereby enables the appropriate allocation of attention to relevant external or
internal events. Finally, we highlight areas where we believe hypotheses can be formulated and tackled
experimentally in the near future, thereby critically increasing our mechanistic understanding of how atten-
tion is implemented at the cellular and network levels.

The limited processing capacity of the perceptual system poses
a complex computational problem for humans and other organ-
isms: which inputs are relevant to current behavioral goals?
Decades of research has now been devoted to understanding
how neurons instantiate the required “selectivity” that allows
an organism to prioritize, or bias, the processing of relevant
over irrelevant inputs. Neuronal processing may be biased by
both bottom-up and top-down influences. The former reflects
the biasing of sensory processing due to stimulus saliency
(brightness, movement, size, for example), which causes fea-
tures to “pop-out” from their surroundings to capture attention.
Top-down processing on the other hand reflects the voluntary
guidance of attention to locations, features, or objects in the
environment. In this way, top-down attention allows for the
voluntary processing of relevant over irrelevant inputs in line
with the current behavioral goals of the organism (Desimone
and Duncan, 1995).

A network of prefrontal and parietal cortical areas is critically
involved in the selection required for top-down attention, and
other high-level cognitive functions such as working memory
or inhibitory control (Bichot et al., 2015; Corbetta and Shulman,
2002; Fedorenko et al., 2013; Moore and Armstrong, 2003).
The state and functionality of this network depend on tightly
controlled activity in brainstem neurons that release neuromodu-
lators at their target sites. Neuromodulators configure neuronal
circuits and thereby specify output properties (Marder, 2012).
They thus shape information processing in local and large-scale
neuronal networks, such that relevant, over irrelevant, informa-
tion is prioritized. This in turn drives behavior the subject hopes
to be rewarding or behavior that minimizes adverse outcomes.
Understanding precisely how this is achieved at the level of
single neurons, local networks, or large-scale networks is vital
for basic and clinical neuroscience. Neuromodulators most
strongly implicated in high-level cognitive functions are acetyl-
choline (ACh), dopamine (DA), noradrenaline (NA), and serotonin
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(5-HT). In this review, we focus on their relevance for top-down
attentional control. While we will focus on their role in relation
to attention, the above neuromodulators have major roles in
other aspects of cognition, such as reward signaling (e.g., ACh
and DA, Richardson and DelLong, 1986; Rutledge et al., 2015;
Schultz, 2015), working memory (DA, NA, Arnsten and Gold-
man-Rakic, 1990; Gamo et al., 2010; Mao et al., 1999; Sawagu-
chi and Goldman-Rakic, 1994; Wang et al., 2004; Williams
and Goldman-Rakic, 1995), or inhibitory control (NA, DA, 5-HT,
Chamberlain et al., 2006; Nandam et al., 2011, 2013, 2014; Win-
stanley et al., 2006).

An important point to address from the outset is how atten-
tion, i.e., the top-down prioritization of behaviorally relevant
inputs, differs from working memory. Working memory can be
conceived as an active process whereby stimulus or internal rep-
resentations are stored “on-line” to prevent temporal decay or
intrusion from competing or distracting stimuli that are outside
the current focus of attention. Dissociating effects of attention
from those of working memory is difficult and in practice the
two processes are highly interactive (Awh and Jonides, 2001).
Attention, as conceptualized in this paper, is a selection mecha-
nism that allows for the preferential processing of task-relevant
information over irrelevant (distracting) information, i.e., it is
a filter mechanism. This selection is driven by currently active
behavioral goals held in working memory. In that sense, attention
acts in the service of working memory. However, behavioral
paradigms employed in neurophysiological studies highlight
the potentially close coupling of attention and working memory
(e.g., cue-guided spatial working memory tasks or cue-guided
spatial attention task). In the cue-guided spatial working memory
task, a brief spatial cue will capture attention, which then triggers
the working memory signal that enacts the behavioral goal of a
memory-guided saccade to cued spatial location. We contend
that covert spatial attention would also be allocated to the
cued location during the memory period, rendering the two
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processes largely inseparable. Here, the neural correlates of
either process would be “delay activity”; that is, activity that
occurs (or persists) even after a behaviorally relevant stimulus
(or cue) is removed from the sensory environment (Fuster,
1978). Similarly, in a cue-guided spatial attention task, a transient
cue (either spatial or symbolic) will activate a spatial working
memory signal specifying a location that should be monitored
for the occurrence of a target, and this monitoring (the preferen-
tial processing of information) will be performed by spatial selec-
tive attention. Again, in this scenario the effects of attention and
working memory during the monitoring period are difficult to
dissociate, even if the initial generation of the top-down goal
(the working memory) may be briefly separable from the atten-
tional signal (the monitoring itself). Given the pervasive use of
these behavioral paradigms in monkey neurophysiology (e.g.,
Chang et al., 2012; Funahashi et al., 1989), we draw on evidence
from both in this review.

The focus of this review will not be on how the different recep-
tors affect specific aspects of cellular signaling, or how behav-
ioral studies have informed our knowledge of cognitive aspects
of attention. Rather, we aim to delineate how these neuromodu-
lators enable attentional signaling, either through direct action,
or by enabling network states, which favor top-down attentional
selection. Such a low-level mechanistic account is necessary to
validate work that conceptualizes high-level neuromodulator
functions from a computational and theoretical perspective
(for example, Yu and Dayan, 2005), and it may help to under-
stand why neuropharmacological manipulations can be task
and context specific. Finally, such a mechanistic account is
required to guide the development of next-generation pharma-
cotherapies. We note from the outset that, although a full under-
standing of the neuromodulation of attention is not possible
given current data, we review the state-of-the-art and highlight
important questions that can be addressed in the near future.

Neuromodulators act mostly through metabotropic receptors,
which activate different G-proteins and thereby trigger second
messenger cascades. They affect different receptor types and
can thereby enhance or reduce transmitter release, synaptic ef-
ficacy, or postsynaptic excitability in neuronal circuits. Excep-
tions to the metabotropic neuromodulator pathways exist for
ACh, which can act through ionotropic nicotinic receptors, and
for 5-HT, which can act through the ionotropic 5-HT3 receptor.
Detailed reviews regarding the different receptors involved and
their action can be found elsewhere (e.g., Beaulieu and Gainetdi-
nov, 2011; Hein, 2006; Nichols and Nichols, 2008; Thiele, 2013).
The effects of these neuromodulators follow the classic Yerkes-
Dodson (inverted U-curve) dose-response relationship (Yerkes
and Dodson, 1908). This describes the phenomenon that either
too little or too much neuromodulatory drive is equally detri-
mental to cognitive ability. This relationship has been described
for ACh (Smucny et al., 2015), DA (Vijayraghavan et al., 2007),
NA (Aston-Jones and Cohen, 2005; Aston-Jones et al., 1999),
and 5-HT (Cano-Colino et al., 2014).

To link neuromodulatory action to attentional effects on
neuronal activity, we first provide a brief account of how top-
down attention affects neuronal activity, i.e., attention that is
directed to spatial locations, objects, or features of the world.
Detailed review articles of these effects can be found elsewhere
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(e.g., Desimone and Duncan, 1995; Maunsell and Treue, 2006;
Maunsell, 2015; Miller and Buschman, 2013). Our aim here is
to link the effects of attention on single neurons and circuits
to those same effects reported for neuromodulators. This link
is in many cases indirect, as our knowledge of the actions of
neuromodulators on cell and population activity arises largely
from studies where attention was not manipulated. Neverthe-
less, the extant data allow us to delineate likely scenarios that
describe how neuromodulator actions could aid attentional
selection.

Effects of Attention on Neuronal Processing

Over the course of the past 30 years, a large number of studies
have delineated the neuronal signatures of top-down attention.
Top-down attention is defined as the cognitive process by which
an individual selects and prioritizes the processing of specific
aspects of information. This cognitive process has neural corre-
lates, and we use the term “top-down attention” as a descriptor
of neuronal activity changes that occur following the selection
process. The behavioral benefits associated with top-down
attentional selection are then an emergent property of activity
changes in single neurons and in neuronal populations that occur
within an area and between multiple areas.

One of the main neuronal correlates of attention is an alteration
to neuronal firing rates (Reynolds et al., 2000; Spitzer et al., 1988;
Treue and Maunsell, 1996). Neurons that represent the focus
of attention respond differently to the inputs they receive.
In general, neurons representing attended locations, features,
or objects show increased firing rates. This phenomenon has
been observed across all cortical and subcortical areas investi-
gated (e.g., Krauzlis et al., 2013; Noudoost et al., 2010). How-
ever, attention can also result in suppression of neuronal activity
for unattended locations or features (Martinez-Trujillo and
Treue, 2004). The ways in which attention changes neuronal
input-output relationships were originally captured by different
models of “gain change.” Gain change describes how neuronal
input-output relationships are affected by attention. These gain
changes can take different forms, such that responses are either
proportionally increased for all stimuli (response gain change),
or mostly for less-salient stimuli (contrast gain change), or by a
reduction in responses to less-salient (non-preferred) stimuli
and an increase in responses to salient (preferred) stimuli (see
Figure 1A, Martinez-Trujillo and Treue, 2004; McAdams and
Maunsell, 1999; Reynolds et al., 2000; Thiele et al., 2009; Willi-
ford and Maunsell, 2006). These different models can, to some
extent, be unified within the normalization model of attention
(Lee and Maunsell, 2009; Mitchell et al., 2009; Ni et al., 2012;
Sanayei et al., 2015). This model assumes that attention affects
the gain of excitatory, but also of inhibitory neurons, thereby
normalizing the increased excitation induced by attention. In
extrastriate and frontal cortex, attention does indeed increase
the activity in putative excitatory and putative inhibitory cells
(Mitchell et al., 2007; Thiele et al., 2016). At first glance,
it may seem counterintuitive that attention increases firing
rates, when increased inhibition should counter such an effect.
However, this effect can be understood in terms of competing
neuronal populations that represent different locations of
features (Reynolds et al., 1999). Attention alters the balance
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Figure 1. Schematic that Exemplifies Some of the Effects Attention Has on Cellular Activity and on Population Activity

Feedback and neuromodulator influences alter the drive in excitatory (blue) and in inhibitory (red) cells, which thereby exert increased influence on one another
and the rest of the network, leading to overall increased, but balanced excitation, and inhibition. Exemplified are three scenarios, which have been described in
the literature when attention is deployed to a spatial location and/or to specific stimulus features. These can also occur when neuromodulators are applied to the

local network.

(A) A result thereof is a gain change, i.e., a change of the output a neuron produces given a specific input.

(B) Another effect of increased balanced excitation and inhibition is an increase in gamma oscillations of the local field potential, indicative of higher neuronal
coherence, proposed to improve information exchange between selected neuronal populations.

(C) Attention and neuromodulators also change the relationship between tuning similarity and noise correlations of neuron pairs, such that population coding

properties are improved.

(D) These changes are reminiscent of altered network attractor dynamics, which stabilize network states, reduce fluctuations, and increase the ability to stay task

focused. a.u., arbitrary units; Hz, frequency in Hertz.

between excitation and inhibition of this competition (Reynolds
and Heeger, 2009). The attention-induced normalization sup-
ports neuronal computations that enable winner-take-all states
(Carandini and Heeger, 2011). Winner-take-all network states
occur, for example, when attention biases one neuronal popula-
tion over another to win the competition for sensory representa-
tion (Reynolds et al., 1999; Wang, 2008). The winning population
shows increased neuronal activity and suppresses its com-
petitors. Competition can also occur in the decision space.
When multiple decisions are possible but competing, the inter-
action between the representations converges toward a single

(winning) choice (Reynolds et al., 1999; Wang, 2008). These
winner-take-all states occur naturally in neuronal attractor net-
works. Attractor networks move from labile states, where they
can undergo regular and easy state transitions, to stable (attrac-
tor) states, where one representation dominates. The stability of
these states is determined by the strength of inhibitory and excit-
atory drive (Deco and Hugues, 2012; Deco et al., 2014). By
increasing inhibitory and excitatory drive, attention can allow
competing unstable patterns of neuronal activity (representa-
tions) to converge to a more stable pattern of activity, such
that a single representation dominates (see Figure 1D for a
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schematic). These stable activity patterns can be associated
with a specific attentional state (such as a location), an item
held in working memory, a decision that has been formed, or a
motor plan. Importantly, the stability of the activity pattern in
the attractor network (illustrated by the depth of the valley in
Figure 1D) can be influenced by different neuromodulators (see
later parts of the review). Cognitive operations or neuromodula-
tors supporting labile states would enhance cognitive flexibility
(but potentially at the cost of increased distractibility), whereas
cognitive operations or neuromodulators supporting stable
states would benefit task focus.

Stabilized attractor networks are characterized by increased
firing rates for the winning population and decreased firing rates
for the losing populations (the described gain changes). In addi-
tion, stabilized attractor networks exhibit reduced neuronal rate
variability and rate co-variability (Deco and Hugues, 2012; Deco
et al., 2014). These effects equally occur in neuronal populations
representing the focus of top-down attention (Cohen and Maun-
sell, 2009; Herrero et al., 2013; Mitchell etal., 2007, 2009; Rabino-
witz et al., 2015; Ruff and Cohen, 2014; Thiele et al., 2016).
Increased neuronal gain and reduced rate variability both in-
crease the signal-to-noise ratio (SNR), that is, the ability of neu-
rons (or neuronal populations) to distinguish between a relevant
and an irrelevant stimulus, to detect the presence or the absence
of a stimulus, or discriminate between two different stimuli. Alter-
ation of rate co-variability (also termed noise correlation) deter-
mines to what extent the neuronal activity in any two cells is
redundant and thus limits how much additional information can
be obtained by decoding the input from both neurons compared
to just one. High levels of co-variation can alternately be detri-
mental, beneficial, or irrelevant (Abbott and Dayan, 1999; Panzeri
et al., 1999). These outcomes are determined by the tuning sim-
ilarity between the neurons. Specifically, a certain change to the
correlational structure of neuronal tuning and of the rate co-vari-
ability (noise correlations) increases the amount of information
neuronal populations can encode, largely by reducing redun-
dancy (see Figure 1C for a schematic of this scenario). Thus,
attention induces gain change, reduces rate variability, and alters
noise correlations, which jointly can increase population coding
abilities, i.e., the amount of information a population of neurons
can encode about different stimulus or task conditions. Impor-
tantly, altered neuromodulator drive can affect neuronal gain,
rate variability, and noise correlations in ways similar to attention.

The increase in inhibitory drive may also contribute to atten-
tion-induced changes in oscillatory activity in the gamma fre-
quency range (Figure 1B), which requires cyclic bouts of excita-
tion-inhibition (Buschman and Miller, 2009; Chalk et al., 2010;
Fries et al., 2001; Gregoriou et al., 2009; Kohl and Paulsen,
2010). Increased oscillatory activity may improve communica-
tion between selected neurons within and between brain areas
(Bosman et al., 2012; Gregoriou et al., 2009). However, attention
does not solely affect the strength of gamma frequency oscilla-
tions. Changes in lower-frequency bands, such as theta (Chang
et al., 2016; Womelsdorf et al., 2010), alpha (Bauer et al., 2012;
Bonnefond and Jensen, 2015; Buffalo et al., 2011; Buschman
et al., 2012; Deco and Thiele, 2009; Jensen et al., 2014), and
beta frequency (Bauer et al., 2012) equally are prominent and
are assumed to attain specific functional roles. For example, de-
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synchronized alpha oscillations are generally associated with
enhanced top-down attentional control (O’Connell et al., 2009),
and beta band oscillations have been discussed as a mechanism
that promotes feedback influences (Fries, 2015).

It is well established that frontal and parietal areas control
top-down attention (Corbetta and Shulman, 2002). These areas
induce attentional effects in sensory and associative areas
through feedback connections (Buschman and Miller, 2009;
Gregoriou et al., 2009; Moore and Armstrong, 2003). In addition,
frontal areas are connected to brainstem neuromodulator nuclei,
whereby they affect their own neuromodulator tone, as well as
the neuromodulator tone in other brain areas (Dembrow and
Johnston, 2014). This pattern of connectivity may account for
the similarity of neuronal changes associated with top-down
attention and those seen when the brain undergoes large-scale
“state” changes that are under neuromodulator control (Harris
and Thiele, 2011). Because of this, it has been argued that the
changes associated with attention are linked to large-scale
changes but occur at a more local level and show more modest
effects (Harris and Thiele, 2011). Attention indeed controls
cortical state in circumscribed neuronal populations within task
relevant brain regions (Engel et al., 2016; Rabinowitz et al.,
2015). Whether these state changes are induced by direct feed-
back, by alteration of neuromodulator tone, or by a mix of the
two is unknown. An equally important question is whether neuro-
modulators, through tonic release, simply enable network states
upon which feedback input can act to induce the described
attentional effects. Alternatively, or in addition, neuromodulators
play a more active role, whereby their phasic and more local
release directly supports states of attention at the neuronal level.

In the sections that follow, we review the evidence for a direct
role of distinct neuromodulators (ACh, DA, NA, 5HT) in attention.
This will be followed by more indirect arguments, where the
action of a neuromodulator at the cellular or network level reca-
pitulates the action of attention, but for which direct evidence
linking the two is not available.

ACh and Attention

The cortically projecting cholinergic system, arising in the basal
forebrain (BF), has long been associated with different cognitive
functions, such as arousal, attention, learning, memory, and
even consciousness (Everitt and Robbins, 1997; Hasselmo and
Sarter, 2011; Sarter and Bruno, 1997). However, its contribution
to attention has been challenged, on the basis that BF cholinergic
projections to the cortex lack spatial specificity (Mesulam et al.,
1986; Sarter et al., 2009) and temporal precision (Sarter et al.,
2009) and are strongly involved in global brain state changes
(Lee and Dan, 2012; Moran et al., 2013; Varela, 2014), such as
transitions from sleep to wakefulness, or from quiet wakefulness
to active exploration (Harris and Thiele, 2011; Vanderwolf, 1988).
These enduring states are assumed to be driven by changes in
tonic and burst (phasic) activity levels of BF cholinergic neurons
(Lee et al., 2005). In contrast, top-down attention is a mechanism
that has high selectivity in the spatial, feature, or object domains,
and it can act with high temporal precision (Coull and Nobre,
1998). Yet, ample evidence points to a specific involvement
of the cholinergic system in top-down attention. For example, le-
sions to the cholinergic system in monkeys and rodents produce
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Figure 2. Influence of Tonic and Phasic Modes of Cholinergic Signaling on Attention, and Spatial Specificity of Cholinergic Input-Output
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(A) Tonic levels of ACh in rodent prefrontal cortex are interspersed by brief phasic increases in ACh, which occur after behaviorally relevant cues, but only if they
occur after “non-cue” trials. These are preceded by glutamate increases, which occur on all “cue detect” trials (after Sarter et al., 2014).

(B) Potential source of spatial and temporal specificity of ACh signals in the cortex. ACh release in rodent prefrontal cortex is partly dependent on local glutamate
activating presynaptic NMDA receptors. Local glutamate control of ACh in rat prefrontal cortex is released from mediodorsal thalamic inputs. Whether other
glutamate sources (e.g., feedback from higher cortical areas) equally control ACh release locally is unknown.

(C) Input to and output from cholinergic basal forebrain neuron is segregated into specific sub-circuits. Cholinergic BF neurons that project to the prefrontal cortex
receive input mostly from neurons in the lateral septum, and from small, but segregated populations of the central amygdala. Cholinergic BF neurons that project
to the motor cortex receive inputs from neurons in the somatosensory cortex, and segregated populations of neurons in the central amygdala and the caudate
nucleus. Cholinergic BF neurons that project to the basolateral amygdala receive input from segregated populations in the central amygdala and the caudate

nucleus (after Gielow and Zaborszky, 2017).

selective attentional deficits, while sparing other cognitive func-
tions such as learning and memory (Dalley et al., 2004; Gill
et al., 2000; McGaughy et al., 1996; Voytko et al., 1994).
Increased cholinergic drive benefits attentional performance
particularly under high task demand and in the presence of dis-
tracting stimuli (St Peters et al., 2011). Finally, polymorphisms
of the gene (CHRNA4) encoding the «(4) subunit of a(4)B(2) nico-
tinic receptors have been associated with individual differences
in top-down attentional control (Greenwood et al., 2009).

In addition, the spatial specificity of BF cholinergic projections
is much more precise than previously thought (Gielow and
Zaborszky, 2017; Zaborszky et al., 2015), whereby cholinergic
neurons can project to fairly localized parts of the cortex (or
subcortical areas, Figure 2C for a cartoon) and in turn have highly
selective input relationships (Gielow and Zaborszky, 2017).

Activity in cholinergic neurons is not only related to global
behavioral states (Lee et al., 2005). Although cholinergic neurons

show tonic activity that is state dependent (Manns et al., 2000),
they also generate temporally precise phasic ACh release in
rat prefrontal cortex upon attention demanding cue detection
(Figure 2A; Parikh et al., 2007; Sarter et al., 2009). Local gluta-
mate co-release is necessary, but not sufficient for these tran-
sients to occur (Sarter et al., 2014). Importantly, precisely timed
activation of cholinergic neurons by means of channelrhodopsin
increases cue detection probability and causes increased levels
of false alarms on no-cue trials. Finally, precisely timed inhibition
of these neurons results in reduced likelihood of cue detection
(Gritton et al., 2016). Moreover, optogenetic activation of cholin-
ergic BF neurons, or their terminals in V1, increases trial-by-trial
performance in mice in a visual detection task (Pinto et al., 2013).

How ACh enables neurons to generate attention-related
signals is poorly understood. Attention-induced rate changes
in macaque primary visual cortex (V1) depend on muscarinic,
not nicotinic ACh receptors (Herrero et al., 2008). At the same
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time, behavioral studies imply a role of muscarinic and nicotinic
receptors in attention (Levin and Simon, 1998; Mansvelder et al.,
2006). Nicotinic receptors might thus contribute to attention-
induced activity changes in higher cortical areas, given that
cell-type-specific expression of muscarinic and nicotinic recep-
tors changes with cortical hierarchy (Disney et al., 2006, 2014;
Disney and Aoki, 2008). Indeed, in macaque frontal eye field
(FEF) muscarinic and nicotinic receptors contribute to neuronal
signatures of attention in a cell-type-dependent manner (Thiele
et al., 2015). For example, muscarinic receptors contribute to
attentional modulation in broad spiking (putative pyramidal)
cells, whereas muscarinic and nicotinic receptors contribute to
attentional modulation in narrow spiking (putative inhibitory) cells
(Thiele et al., 2015).

Together, these data demonstrate that cholinergic signals are
involved in attentional signaling, through both phasic and tonic
activity. In addition cholinergic input is essential for spatial work-
ing memory functions signals in macaque dorsolateral prefrontal
cortex (dIPFC). Spatial working memory is severely impaired
following cholinergic depletion of the dIPFC (Croxson et al.,
2011). Moreover, nicotinic alpha-7 receptor activation is required
to enable NMDA-receptor-mediated spatial working memory
signals in layer Il dIPFC neurons (Yang et al., 2013), whereas
nicotinic alphadbeta?2 receptors help to maintain spatial working
memory signals in dIPFC under distracting conditions (Sun et al.,
2017). Based on this, we speculate that nicotinic receptors are
also involved in the ability to keep top-down goals in mind
(a form of working memory), which may thus affect the strength
of attentional control. It is worth noting that the role played by
ACh in dIPFC may differ in important ways from its role in V1.
In V1, presynaptic NMDA receptors could mediate ACh release
to enhance attention, whereas in dIPFC postsynaptic o7
activation supports NMDA-receptor-mediated working memory
signals.

Cholinergic Contribution to Neuronal Coding

At the cellular and network level the effects of ACh mirror those of
top-down attention. Attention generally increases neuronal firing
rates and most studies report the same when ACh is applied
(Disney et al., 2007; Herrero et al., 2008; Pinto et al., 2013; Rob-
erts et al., 2005; Sillito and Murphy, 1987; Thiele et al., 2012;
Zinke et al., 2006). Whether the increased activity with attention
is a consequence of increased cholinergic drive on a trial-by-trial
basis is unknown. Cholinergic transients do not occur on all trials
(Sarter et al., 2014). In addition, cholinergic transients have been
linked to reward signaling rather than attention (Hangya et al.,
2015). This makes a scenario whereby alterations of firing rate
on different trials are mediated by alterations in cholinergic drive
somewhat unlikely. At the same time, spatial and temporal con-
trol of ACh release could in theory be locally induced, even if
cholinergic neurons do not change their firing rates (Figure 2B).
How could this occur? Transmitter release can be triggered
locally within cortical networks through presynaptic NMDA re-
ceptor activation, even if the transmitter releasing terminal
does not receive (generate) an action potential (Kunz et al.,
2013). Additionally, local glutamate release is a requirement for
ACh transients in rat frontal cortex (Parikh et al., 2008). It could
be this glutamate release that acts on presynaptic NMDA recep-

774 Neuron 97, February 21, 2018

Neuron

tors located on cholinergic terminals, whereby ACh is locally
released in a temporally and spatially precise manner. Although
speculative, such a scenario could explain why attentional mod-
ulation of firing rates and firing rate reliability in V1 depends on
NMDA receptor availability (Herrero et al., 2013; Self et al.,
2012). The general explanation of these results is that the atten-
tional phenomenon seen in V1 are a direct effect of feedback
glutamate signaling, which terminates on NMDA rich synapses.
However, it is also possible that feedback-induced glutamate
release results in NMDA receptor activation on ACh terminals,
causing locally increased ACh levels, which increase firing rates
and reduce rate variability (Figure 2B for an illustration of the pos-
sibility). At least in primate FEF, ACh reduces rate variability in a
manner analogous to attention (Thiele et al., 2015, 2016). So how
does increased ACh affect rate variability? We contend this is
most likely achieved by overall increased, but balanced, excita-
tion and inhibition. This results in gain changes and stabilized at-
tractor dynamics, which in turn reduce rate variability. Stabilized
attractor dynamics in this way have additional benefits. Stable
attractor configurations (e.g., directions of attention) are less
prone to external perturbation (distractions) and may help task
focus over short timescales (Figure 1D). Over longer timescales
stabilized attractors could improve overall task focus across tri-
als, conceptualized as “reduced utility cost” (Sarter et al., 2014).

Stabilized attractor networks have additional consequences,
which we turn to next. These include altered neuronal correla-
tions and oscillations, which in turn affect the abilities of neuronal
populations to encode information and communicate efficiently.

Cholinergic Effects on Population Activity

Attention and ACh both affect neural population coding abilities.
Attention induces desynchronized brain states, which are bene-
ficial for coding (Engel et al., 2016; Harris and Thiele, 2011), it
alters oscillatory activity in different frequency bands assumed
to aid coding and communication (Chalk et al., 2010; Fries
et al., 2001; Gregoriou et al., 2009), and it reduces neuronal
co-variability (noise correlations, Cohen and Maunsell, 2009;
Herrero et al., 2013; Mitchell et al., 2009; Rabinowitz et al.,
2015; Ruff and Cohen, 2014) in ways that should benefit informa-
tion encoding (Abbott and Dayan, 1999; Panzeri et al., 1999).
Whether ACh modulation is causally linked to these attentional
effects is largely to be determined (but see Bauer et al., 2012).
What has been shown, however, is that increasing ACh in the
cortex induces effects that are very similar, if not identical, to
those described for attention.

First, ACh is critically involved in altering brain states (Harris
and Thiele, 2011; Metherate et al., 1992) (but see Constantinople
and Bruno, 2011). Second, ACh can increase stimulus-induced
gamma oscillations in visual and prefrontal cortex (Howe et al.,
2017; Munk et al., 1996), whereas blockade of muscarinic recep-
tors results in increased low-frequency (<12 Hz) oscillations
(Harris and Thiele, 2011). Moreover, increasing cholinergic avail-
ability results in an enhanced effect of attention on the hemi-
spheric lateralization of low-frequency oscillations (alpha/beta
frequency, Bauer et al., 2012). Third, increasing cortical ACh
levels reduces noise correlations (Minces et al., 2017; Thiele
etal., 2012). To improve population coding abilities, noise corre-
lations need to be altered in specific ways (Abbott and Dayan,
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1999; Panzeri et al., 1999). Whether or not a reduction in noise
correlation is beneficial to decoding depends on signal correla-
tions. Neuronal pairs with positive signal correlation should
reduce their noise correlations, whereas pairs with negative
signal correlations should increase their noise correlations.
Such changes can be captured by analyzing the slope of the
regression between signal and noise correlation (Minces et al.,
2017). A reduced slope is associated with better coding abilities
in the population. Attention and increased cortical ACh result in
such a reduced slope (Minces et al., 2017; Ruff and Cohen,
2014). These results show that ACh alters the covariance struc-
ture of cortical networks, thereby improving population coding,
rather than simply altering neuronal gain across the cortical
mantle. How could an increase in ACh alter the covariance struc-
ture of the cortical network in such a way? First, ACh increases
overall neuronal gain (Herrero et al., 2008; Thiele et al., 2012),
and it increases the efficacy of feedforward connections (Gil
et al., 1999). Both of these changes will result in a cortical
network that is less affected by slow global activity fluctuation
arising from ‘diffuse’ inputs, and thus will drive noise correlations
to values closer to zero (irrespective of whether noise correla-
tions are initially negative or positive). Second, ACh reduces in-
tracortical (lateral) synaptic efficacy through presynaptic M2 re-
ceptor activation (Hasselmo and Bower, 1992). These lateral
connections are dominated by local neurons and by neurons
with similar tuning characteristics (Martin, 2002), i.e., neurons
with relatively high signal correlations. Reduction of the efficacy
of these connections means that neurons have less mutual
impact on one another, which likely reduces their noise correla-
tions. Overall, these alterations would induce the specific
change that is required to improve coding (Figure 1C).

In future work, it will be important to determine whether any
of the described changes to neuronal activity are specific for
different modes of BF cholinergic activity. The slow tonic mode
has been argued to be related to global and enduring behavioral
state changes, whereas the rapidly fluctuating phasic mode with
high temporal precision has been linked to reinforcement
learning (Hangya et al., 2015), reward (Richardson and Delong,
1986), and cue detection in an attention task (Parikh et al., 2007).
Notably, brain areas such as the orbital PFC and the insular cor-
tex that encode high-level reward and utility have strong projec-
tions to the BF (Mesulam and Mufson, 1984), which could supply
a reward/utility signal to cholinergic neurons. The resulting
cholinergic signal might then set a cortical processing mode
whereby task focus (reward exploitation) is favored. One may
thus ask whether fluctuating levels of ACh release are involved
in the fluctuating allocation of top-down attention. To answer
this, additional cyclic voltammetry in different areas and species
or 2-photon imaging of cholinergic terminals in various areas
would yield invaluable insight. Alternatively, ACh release, in its
tonic mode, might simply shape cortical network interactions
such that attention can allocate neuronal resources adequately.
In the latter scenario, other sources would provide the temporal
and spatial specificity (e.g., feedback from higher cortical areas)
to induce the fine-grained coding changes seen with different
forms of top-down attention. Proposals have been made where
alteration in ACh signals directly link to the allocation of attention
(Herrero etal., 2008; Sarter et al., 2009; Thiele, 2013). Even if ACh

simply acts to enable these behavioral effects, it is crucial that
we delineate the exact mechanism, as this might provide a
more nuanced perspective on the use of cholinergic agents to
enhance attention.

Attention and the Dopaminergic System

DA is strongly linked to reward signaling and the economic deci-
sion variable of utility (Schultz et al., 1997, 2017; Stauffer et al.,
2016) and learning (Waelti et al., 2001). In addition it is a key neu-
romodulator supporting prefrontal spatial working memory sig-
nals (Arnsten et al., 1995, 2012; Sawaguchi and Goldman-Rakic,
1991; Wang et al., 2004; Williams and Goldman-Rakic, 1995).
The DA system is also a primary pharmacological target for dis-
orders such as attention deficit hyperactivity disorder (ADHD),
schizophrenia, and Parkinson’s disease, which are associated
with attention deficits (Arnsten and Rubia, 2012).

Although long hypothesized, it has recently been shown that
DA contributes to spatial attention and to target selection in ma-
caque FEF (Noudoost and Moore, 2011a, 2011b; Soltani et al.,
2013). Noudoost and Moore (2011a) engaged animals in a free
saccade target selection task, where target onsets were system-
atically altered. This led animals to more often choose those tar-
gets that appeared earlier. Infusion of D1 antagonists and D2 ag-
onists into selected locations of primate FEF systematically
shifted the choice function, biasing choices toward locations
represented by neurons that were affected by the DA manipula-
tions. In addition, in a passive fixation task, the infusion of D1 an-
tagonists into FEF altered neuronal responses in remote area V4,
as if attention had been allocated to the receptive field of those
neurons (Figure 3B; Noudoost and Moore, 2011a). The V4
response parameters affected were firing rate, sharpness of tun-
ing, and rate variability. However, no effects were found on V4
activity, when D2 agonists were infused into FEF. The discrepant
results for behavior and neuronal recordings can be explained by
layer-dependent expression of D1 and D2 receptors in macaque
cortex. D1 receptors are expressed in supragranular layers
(which project to area V4) and infragranular layers of the prefron-
tal cortex, whereas D2 receptors are expressed only in infragra-
nular layers, which provide output to the midbrain and brainstem
(Lidow et al., 1991). It may be surprising that a reduction in D1 re-
ceptor action in FEF results in increased behavioral choices of
targets presented at the location the FEF neurons represent,
and in increased activity of V4 that overlaps with the spatial rep-
resentation of the affected FEF neurons. However, this could
result from the mostly inhibitory nature of D1 action. Blocking
this would give the affected FEF neurons a competitive advan-
tage for selection compared with other FEF neurons and may
thereby trigger winner-take-all states in the absence of a cogni-
tive trigger signal. This would then enhance the feedback signal
to V4 in a spatially selective manner. In a follow-up analysis,
these authors used neural network analysis to show that D1 re-
ceptors affected choices by increasing the efficacy of inputs
and recurrent connections, whereas D2 receptors affected
choices by increasing output efficacy (Soltani et al., 2013). The
ongoing development of selective D1 agents for use in humans
(Arnsten et al., 2017) will provide an opportunity in the near future
to arbitrate between the relative roles of D1 and D2 receptors
in spatial attention. Already in line with the macaque studies,
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human work failed to identify a modulatory effect of D2 receptor
activation on visual perception (Gratton et al., 2017).

In spatial working memory tasks, which are conceptually
related to top-down spatial attention, application of a small
dose of D1 agonist increases spatial tuning of macaque dIPFC
memory fields by reducing the activity for non-preferred loca-
tions (Figure 3A; Vijayraghavan et al., 2007), whereas application
of a D1 antagonist in dIPFC improves the spatial tuning of mem-
ory fields by enhancing preferred location activity (Williams and
Goldman-Rakic, 1995). Conversely, D2 agonists do not affect
spatial coding during the working memory delay period but in-
crease saccade-related activity for preferred target locations.
Placed within the context of attention, this would largely match
the results reported by Noudoost and Moore (2011a), where
D1 receptors are involved in the generation of top-down atten-
tional signals (assumed to be reflected by activity in selected
FEF neurons, which affect sensory areas), whereas D2 recep-
tors, located in output layer 5, are involved in motor-related
choice activity (Noudoost and Moore, 2011a; Soltani et al.,
2013). The functional dissociation between D1 and D2 receptors
and their layer-dependent expression raises the question of
whether DA inputs are dissociable. From an anatomical perspec-
tive, work in rodents provides evidence in favor of this view. The
two main sources of cortical DA, namely, the ventral tegmental
area (VTA) and the substantia nigra (SN) have somewhat different
termination patterns in PFC. Input arising from the rodent SN
preferentially terminates in layer I, whereas input from the VTA
preferentially terminates in layer V (schematic in Figure 3C;
Berger et al., 1991). Interestingly, layer 5 inputs, which are modu-
lated by D2 activation, are assumed to carry value-based infor-
mation (in a model of macaque FEF; Soltani et al., 2013), whereas
inputs to superficial layers, modulated by D1 activation are
assumed to carry stimulus-related information (Soltani et al.,
2013). Speculatively, then SN-DA signals might be more task
and attention related, whereas VTA-DA signals might be more
reward related. Indeed, such differences have been observed
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Figure 3. Neuromodulation of WM Fields,
Remote Feature Tuning, and Specificity of
Dopaminergic Output Signals

(A) Spatial tuning of WM fields is enhanced when
small amounts of D1 agonists are applied in the
vicinity of the neurons, by selectively reducing
activity for non-preferred locations (memory
fields). This is equivalent to a noise reduction.
Spatial tuning of WM fields is equally enhanced
when small amounts of NA «2A agonists are
applied in the vicinity of the neurons, by selectively
increasing activity for preferred locations (memory
fields). This is equivalent to signal enhancement.
Both changes increase the SNR.

(B) Application of D1 antagonists to area FEF en-
hances the tuning of area V4 neurons that have
overlapping receptive fields with the affected FEF
locations.

(C) Hypothetical interactions of dopaminergic
subpopulations carrying specific; based on pro-
jections found in rat. dIPFC, dorsolateral pre-
frontal cortex; FEF, frontal eye field; VTA, ventral
tegmental area; SN, substantia nigra; a.u., arbi-
trary units.

SN

in working memory tasks (Matsumoto and Takada, 2013).
Whether these results hold in a top-down attention task needs
to be determined. However, in rodents performing a 5 choice se-
rial reaction time task (5-CSRTT) it was found that increasing the
activity of midbrain dopaminergic neurons using chemogenetics
was detrimental to attentional performance, but not response
inhibition (Boekhoudt et al., 2017). Importantly, different aspects
of attention deteriorated when VTA- or SN-DA neurons were
affected. Increasing VTA- or SN-DA activity caused increased
numbers of trial omissions, whereas accuracy (a measure of
attentional performance; Bari et al., 2008) was only affected
when SN-DA neuronal activity was increased (Boekhoudt
et al., 2017). Finally, behavioral features common to attentional
dysfunctions, such as hyperactivity, can be induced by
increasing the activity of VTA- not SN-DA neurons. This hyperac-
tivity was induced when increasing the activity of VTA-DA neu-
rons projecting to the nucleus accumbens, but not of those pro-
jecting to prefrontal cortex (Boekhoudt et al., 2016). Taken
together, these findings are in line with the hypothesis that DA
signals arising in the SN and terminating in superficial PFC aid
the generation of feedback attention signals, whereas those
arising in VTA and terminating in infragranular layers are related
to reward/reward prediction error signaling and thus regulate
choice signals (Figure 3C for a schematic thereof). Additionally,
specific subsets of VTA-DA neurons in rodents are involved in
either working-memory-related or reward-related activity and
have different output and input connectivity. Those involved in
working memory (WM) project preferentially to the PFC, whereas
those involved in reward/motivation signaling project prefer-
entially to the nucleus accumbens and orbitofrontal cortex
(OFC) (Lammel et al., 2008). Finally, optogenetic activation of
their respective input (lateral habenula versus laterodorsal
tegmentum) elicits aversion- versus reward-related behaviors
(Lammel et al., 2012, 2014). Whether similar distinctions
exist in primates is unclear and additional work in rodents is
required to test the hypothesized relationships between these
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anatomically segregated connections and the specific signals
they might carry. Regardless, it is now well established that DA
signals have a variety of different effects on cortical networks,
and importantly they serve different functions. These are,
at least in part, segregated into specific anatomical subdivisions.
Together these multiple effects of DA on cognitive functions
helps to strengthen specific aspects of mental representations
(Arnsten, 2011), for example, sculpting representation of sensory
inputs, and biasing outputs in favor of choices that have a good
history of yielding rewards. Within this context, it may not matter
whether the mental representation is rule based, WM related, or
a top-down attention monitoring signal. It seems clear that DA
contributes to all of these, and all of these mental operations
are impaired in psychiatric and neurological disorders of putative
dopaminergic origin. Given the iliness burden associated with
these disorders, there is a clinical imperative for the ongoing
development of more selective DA agents. Significant advances
have been made in this space with the development of selective
D1 agonists (e.g., dihydrexidine), which offer the promise of
remediating WM and attention deficits in disorders such as
schizophrenia (Arnsten et al., 2017).

Attention and the Noradrenergic System
The noradrenergic (NA) system affecting the cortex arises from
neurons located in the locus coeruleus (LC, Loizou, 1969). Theo-
rizing around the function of the noradrenergic system has par-
alleled that of the other neuromodulatory systems, being argued
to be non-specific in its projection and in its function. It was
assumed that the cortical projection had very limited anatomical
specificity, other than possibly at the level of right hemisphere
dominance in humans (Grefkes et al., 2010). Moreover, the
assumption was that the level of activity in NA neurons, which
varied between different sleep and wake states determined the
level of “arousal” (for review, see, e.g., Aston-Jones and Cohen,
2005; Aston-Jones and Waterhouse, 2016). Neurons fire toni-
cally at low rates during sleep, at higher rates during normal
wake states, and at yet higher rates when under stress (Aston-
Jones and Bloom, 1981; Aston-Jones et al., 1991; Foote et al.,
1980). These different rates of activity can be linked to differ-
ences in the ability to perform cognitively demanding tasks,
with low performance when tonic activity is either low or very
high (Aston-Jones and Cohen, 2005; Aston-Jones et al., 1999).
Formulating a coherent theory around NA functions is compli-
cated by that fact that NA has different and sometimes opposite
effects dependent on the circuit examined. For example, in sen-
sory cortex NA affects its target neurons through a1, 22, and
adrenergic receptors. a1 receptor activation generally causes
excitation, a2 activation causes inhibition (reviewed in Berridge
and Waterhouse, 2003), and B adrenergic activation generally
increases excitability (McCormick et al., 1991). The overall effect
of NA release at the cellular level is a reduction in spontaneous
activity and an increase in input-driven activity provided the
stimulus is salient (or preferred), thereby improving the SNR
(in a manner similar to the filter gain change in Figure 1A;
Foote et al., 1980; Waterhouse et al., 1988, 1998). This specific
behavior sets it apart from the action of, e.g., ACh or DA, which,
if excitatory, result in either no change of spontaneous activity, or
even mild increases of spontaneous activity (i.e., akin to the

“response gain” change illustrated in Figure 1A). At the single-
cell level, NA might thus cause a shift toward saliency detection,
where weak stimuli are filtered out, and salient stimuli elicit
strong responses (Figure 1A; for an example, Servan-Schreiber
et al., 1990). ACh has been hypothesized to cause similar action,
not necessarily by altering single-cell filter gain mechanisms
uniformly, but rather by network reconfiguration (Thiele, 2013).
However, in primate dIPFC a2 receptor stimulation of layer llI
increases delay cell firing (Li et al., 1999) and reduces distracti-
bility (Arnsten and Contant, 1992), while a1 receptor stimulation
decreases delay cell firing (Arnsten, 2011). This discrepancy
between the effects of NA on sensory cortex and PFC suggests
that NA in PFC may be involved in top-down control (attention,
WM) through o2 activation, whereas it is involved in bottom-
up state control through «1 activation in sensory cortex. These
control mechanisms would be differentially activated based on
levels of NA release, as @2 and a1 receptors have differential
NA affinity.

As stated previously, one of the main arguments against impli-
cating neuromodulators in top-down attentional signaling is the
fact that top-down attention is highly specific in the spatial
and/or the feature domain, which affects very localized (or at
least very specific) neuronal populations. Although the spatial
specificity of the NA projections are insufficient to yield the
required top-down resolution, the NA system nevertheless medi-
ates the spatial specificity of WM signals, by dynamically sculpt-
ing local network interactions (reviewed in Arnsten et al., 2012).
Moreover, the NA projection system is “less unspecific” than
previously argued. For example, certain subsets of NA neurons
exclusively project to the insular cortex, where they aid in the
analysis of enteroception, and these NA neurons in turn are
affected by afferents from the enteroceptive system (Chandler
etal., 2014a; Waterhouse and Chandler, 2016). Moreover, a sub-
set of LC neurons project only to the PFC and not to motor cortex
in the rat (Chandler et al., 2014a). LC projections to the PFC
differ from those to the orbitofrontal cortex. The former support
attention and extradimensional shifting, whereas the latter sup-
port reversal learning (Chandler et al., 2014b). Finally, specific
prefrontal neurons, even if localized in the immediate vicinity
of one another, are differently affected by neuromodulation,
such that layer 5 cells, which project to the brainstem, show
different general response properties and are affected differently
by NA activation (through «2A receptor activation), than intra-
cortically projecting neurons (Dembrow and Johnston, 2014;
Dembrow et al., 2010). These results are testament that the
brainstem neuromodulator system, even if comparatively unspe-
cific, can mediate very specific and localized effects at cortical
target sites.

As is the case for other neuromodulators, NA neurons also
engage in a phasic response mode, where they respond to
behaviorally relevant stimuli with brief bursts of activity (Aston-
Jones et al., 1991, 1994, 1997; Clayton et al., 2004). Given that
the phasic activity is task dependent (larger when the animal
performs the task well, and larger on correct than on error trials),
and it temporally precedes the behavior, it has been suggested
that it provides a “temporal attention filter, that facilitates task
relevant behaviour” (Aston-Jones and Cohen, 2005). Alterations
in baseline (tonic) activity are also linked to behavior, butin a very
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different manner. Higher baseline NA activity is accompanied by
reduced task performance and increased distractibility (Rajkow-
ski et al., 1994). Based on this discrepancy, it has been argued
that strong phasic task-related activity (in conjunction with low
tonic LC-NA activity) helps the animal to stay task focused
(and thereby exploit current reward contingencies; “exploita-
tion”), whereas the high tonic activity (in conjunction with low
phasic LC-NA activity) supports a mode where task focus is
low and alternative behaviors are explored for their potential
benefits (“exploration”, Aston-Jones and Cohen, 2005; Usher
et al., 1999; for an interpretation in terms of uncertainty resolu-
tion, see also Yu and Dayan, 2005). This distinction can also
be couched in terms of high versus low neural gain, which is
increasingly thought to influence attention and decision making
(Eldar et al., 2013). In the context of attractor networks, the
former would be associated with a stabilized state, while the
latter would be associated with a less stable state.

Which of the two NA modes directly affect PFC-dependent
cognitive signals is not entirely clear, but the tonic mode is a
likely candidate. The role of NA on cognitive signals in the PFC
has best been studied in relation to spatial WM (Arnsten, 2011,
2013; Arnsten and Jin, 2014; Robbins and Arnsten, 2009). At
moderate (non-stressed) levels, NA improves WM performance
through «2A receptor activation (Arnsten and Goldman-Rakic,
1985). High levels of NA impair PFC activity and WM perfor-
mance through stimulation of a1 (Mao et al., 1999) and B1 recep-
tors (Ramos et al., 2005), which have lower NA affinity. The WM
delay activity in the prefrontal cortex, while mediated through
recurrent excitation dependent on NMDA receptor activation
(Wang et al., 2013), is strongly modulated by «2A receptor
activation (Wang et al., 2007). The a2A receptor activation im-
proves spatial tuning of WM-related delay activity in PFC neu-
rons, by increasing preferred spatial memory locations, without
affecting non-preferred locations (see Figure 3A for a schematic).
Although a number of studies in humans have also manipulated
a2A signaling during tasks of spatial attention, results are incon-
clusive with some studies reporting effects of clonidine (Coull
et al., 2001), but not others (Gratton et al., 2017).

A role for NA in other aspects of top-down attention, such as
sustained attention, is, however, supported. Low-dose cloni-
dine, which acts pre-synaptically to reduce NA cell firing and
release, increases attentional lapses (Smith and Nutt, 1996).
Notably, this effect was reversed by treatment of a selective
alpha-2-adrenoceptor antagonist. Moreover, methylphenidate,
a psychostimulant used in the treatment of ADHD, which en-
hances NA and DA signaling and improves sustained attention
(Dockree et al., 2017). It is plausible that this effect is at least
partially attributable to modulation of a2A receptors, since meth-
ylphenidate robustly modulates these receptors in PFC.

In summary, multiple lines of evidence support the view that
the LC-NA system exerts an important neuromodulatory influ-
ence on attention. Although animal work shows potent modula-
tions of cells and circuits supporting spatial WM and attention by
NA agents, identifying specific cognitive effects of these agents
in humans has been a challenge. Part of the challenge in human
work results from the sedating effects of acute dosing of a2A
agents (e.g., clonidine, guanfacine). This yields noisy behavioral
performance and difficulty in discriminating between task-spe-
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cific effects of the drug and the non-specific effects of sedation.
Although sedation wanes with chronic dosing, such regimens
are ethically hard to justify in the non-clinical cohorts that are
often employed in psychopharmacology. Establishing specific
effects of «2A agents on top-down attention is therefore likely
to require the recruitment of clinical cohorts with a clinical indica-
tion (e.g., guanfacine in ADHD).

Attention and the Serotonergic System
The contribution of 5-HT to top-down attention may be less
direct than that described for ACh, DA, and NA. However, vary-
ing levels of 5-HT do affect the ability to engage and perform well
in top-down attention and spatial WM tasks.

For example, 5-HT affects spatial tuning of putative pyramidal
cells in a memory-guided saccade task in macaque dIPFC.
Blockade of 5-HT,4 receptors resulted in reduced spatial tuning,
whereas activation of these receptors caused increases in
spatial tuning by either increasing activity for preferred target
locations, and/or reducing activity for non-preferred target loca-
tions (Williams et al., 2002). Given the proposed link between
spatial WM and spatial attention, we would speculate that similar
effects will be found in top-down attention tasks in dIPFC (and
possibly the FEF). However, it is equally possible that very
different effects occur when using an attention task, as the
5-HT 4a2a agonist psilocybin impairs attentional tracking in
humans, without affecting spatial WM. The former was inter-
preted as resulting from reduced ability to suppress distracting
stimuli, rather than reduced attentional capacity per se (Carter
et al., 2005).

Reduced attentional performance is also seen under other
conditions. Systemic injection of a 5-HT, agonist in rats results
in reduced accuracy (attention) and increased impulsivity
(response disinhibition) in 5-CSRTT (Koskinen et al., 2000). How-
ever, direct infusion of a 5-HT,a,c antagonist into rodent mPFC
only reduced impulsivity, without affecting attention (Passetti
et al., 20083). This discrepancy could indicate that effects on
attention/accuracy are induced by 5-HT action in areas different
from mPFC. Blockage of 5-HTa and 5-HT,a receptors offsets
the 5-CSRTT performance deficits seen when NMDA receptors
are blocked (Carli et al., 2006; Ceglia et al., 2004). Despite this
common effect on accuracy overall, the two receptor subtypes
have dissociable functions in relation to attention (accuracy).
5-HT 44 blockade improves accuracy by reducing NMDA recep-
tor blockade-induced perseverance, whereas 5-HT,a blockade
affected accuracy by reducing impulsivity. Based on this disso-
ciation, it has been suggested that 5-HT,a receptors are critical
to modulate attentional control of response inhibition (Aznar and
Hervig, 2016).

A role of 5-HT in attentional processes has also been demon-
strated in a reversal learning task. Reversal learning describes
the phenomenon where subjects have to inhibit responses that
are no longer rewarding, shift attention to alternative stimuli,
which could be associated with reward, and evaluate the risk/
benefit in responding to these novel stimuli. It requires cognitive
flexibility and is often assessed using the Wisconsin card sorting
test in human and non-human primates (Grant and Berg, 1948;
Nakahara et al., 2002), or the attentional set shifting task in
rodents (Kesner and Churchwell, 2011). The main anatomical
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area involved in reversal learning is the orbitofrontal cortex, with
its projections to the medial and ventral striatum. Reversal
learning requires adequate 5-HT levels, which helps updating
of the value/utility of responding to novel (not previously
rewarding) stimuli and allows inhibition of previously rewarded
responses (Roberts, 2011). In addition to the orbitofrontal cortex,
rodent mPFC (or primate dIPFC) are also involved in reversal
learning, when extra-dimensional shifts or new stimulus reward
association learning (a shift in attention) is required. Extradimen-
sional shifting is improved by 5-HT,4 receptor blockade (Passetti
et al., 20083), or generally reduced 5-HT input to mPFC (dIPFC).
Thus, 5-HT,a receptors in mPFC/dIPFC would be involved in
attentional control, whereas 5-HT,, receptors in orbitofrontal
cortex are involved in cognitive flexibility and reversal learning
(Aznar and Hervig, 2016). Attentional control would, however,
be affected by 5-HT,, in an indirect (or negative) manner,
whereby low levels of 5-HT improve attention. Unsurprisingly,
5-HT depletion results in improved attentional control in humans
(Scholes et al., 2007). Activation of 5-HT receptors results in
increased distractibility (associated with reduced focus on
recently rewarded items or behaviors) and in increased cognitive
flexibility when reward contingencies have changed (Baker et al.,
2011; Terry et al., 2005). This is reminiscent of the exploitation
versus exploration functions that have been discussed in relation
to NA, but by different mechanisms. Exploitation would be
governed by low tonic 5-HT in mPFC and orbitofrontal cortex,
whereas exploration would be induced when 5-HT levels are
high in either area. Potential cellular mechanisms for this effect
have been described by Tian et al. (2016). These authors report
that 5-HT inhibits mouse layer 6 mPFC pyramidal cells through
5-HT1a and 5-HT5a receptors. This inhibition results in reduced
activity in layer 5 interneurons, thereby increasing what the au-
thors define as “noise” in the layer 5 output layers. A conse-
quence thereof could be an overall reduced threshold to engage
in “untested” exploratory behaviors, i.e., a form of exploration.

Overall, the above may fit the notion that 5-HT neurons in the
dorsal raphe nucleus contain information of the “state value” or
“reward value” of the current situation (Roberts, 2011). However,
the neurons in the dorsal raphe nucleus encode positive as well
as aversive future outputs (Bromberg-Martin et al., 2010; Liet al.,
2016; Miyazaki et al., 2014), and these can even involve highly
specific pathways (Marcinkiewcz et al., 2016). Thus, the coding
of dorsal raphe 5-HT neurons appears more diverse than simply
representing “reward value.”

Summary and Outlook

Here, we have reviewed the critical role played by neuromodula-
tors (ACh, DA, NA, and 5HT) in mediating attention-induced
modulations of neuronal activity at the single-neuron and circuit
level. Similarities of action exist across these neuromodulators,
such as the common existence of phasic versus tonic modes,
with effects that follow U-shaped dose-response relationships,
whereby too little or too much neuromodulator drive is detri-
mental to cognition. However, important differences between
their actions also exist.

ACh

Arguably, the classical view is that neuromodulation of attention
occurs via cholinergic mechanisms. Yet as we have reviewed,

significant gaps in our knowledge exist regarding the specific
roles of receptor and cell subtypes, release mechanisms, and
local control thereof. At the single-neuron level, ACh mediates
attention-induced rate changes that vary regarding their specific
receptor involvement between lower (e.g., V1) and higher
cortical areas (e.g., FEF). It will be important to delineate these
differences in more detail for different excitatory and inhibitory
cell types, at different levels of the cortical hierarchy. At the
circuit level, ACh reduces rate variability and co-variability
via enhanced gain and stabilized attractor dynamics, thereby
improving population coding abilities. Behaviorally, stabilized at-
tractors may reduce moment-to-moment distractibility as well
as promoting longer-term task engagement.

DA

Arole for DA in top-down spatial attention is supported by animal
work, but ultimately receptor- and cell-type specificity requires
further clarification. For example, the relative expression of D1
and D2 receptors in supragranular (derived from SN-DA neurons